1 (a (i) 6e between two nitrogen atoms; note: can be any combination of dots or crosses 1 lone pair on each nitrogen atom;
(ii)
solid gas

pattern:	regular / lattice	random / irregular / no pattern;	[1]
distance:	close	far apart / spread out;	[1]
movement:	vibrate / fixed position	moving;	[1]

note: comparison must be made
(b) particles have more energy / move faster;
collide harder / collide more frequently / more collisions / collide with more force; allow: molecules instead of particles
(c) (i) nitrogen has smaller M_{r};
nitrogen (molecules) move faster (than chlorine molecules) / ora; note: comparison must be made
(ii) (at higher temperature) molecules move faster / have more energy

Question	Answer	Marks
2(a)(i)	$\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl} ;$	1
2(a)(ii)	di	1
2(a)(iii)	solid forms at: A; explanation: ammonia molecules/particles have a smaller mass; (and so) move/diffuse faster;	$\begin{array}{ll} & 3 \\ 1 & \\ 2 & \end{array}$
2(a)(iv)	M1 solid forms in less time/faster/quicker; M2 particles/molecules have more energy; M3 (and so) move faster/diffuse faster;	$\begin{array}{ll} & 3 \\ 1 & \\ 1 & \\ 1 & \end{array}$
2(b)(i)	test: add sodium hydroxide (solution and warm); result: test gas/ammonia with (red) litmus/Universal Indicator/pH paper; indicator turns blue/ammonia produced;	$\begin{array}{ll} & 3 \\ 1 & \\ 2 & \end{array}$
2(b)(ii)	test: add silver nitrate (solution); result: add (dilute) nitric acid; white precipitate;	$\begin{array}{ll} \hline & 3 \\ 1 & \\ 2 & \end{array}$

Question	Answer	Marks
2(c)(i)	cov	1
2(c)(ii)	M1 one shared pair of electrons between each N and H ; M2 one shared pair of electrons between the N atoms; M3 one lone pair on each N and no additional electrons anywhere;	$\begin{array}{ll} & 3 \\ 1 & \\ 1 & \\ 1 & \end{array}$
(d)(i)		1
2(d)(ii)	proteins are made from more than two monomers; OR nylon is made from 1 or 2 monomers (only);	1
2(d)(iii)	acids;	1
2(e)		1

$3 \quad$ (a (i) $\quad(X(s) \leftrightarrow) X(1)$ [1]
(ii) melting point/freezing point (of X) [1]
(iii) gas/gaseous or vapour [1]
(iv) not horizontal or line slopes or line is lower [1]
(b) (i) 14.3 [1]
(ii) $85.7 \div 12$ and $14.3 \div 1$ or 7.14 and 14.3 [1]
ratio 1:2 [1]
CH_{2} [1]
note: Award all 3 marks for correct answerallow: alternative working e.g.
$85.7 \times 84 \div 100$ and $14.3 \times 84 \div 100$ or $71.988 / 72$ and $12 / 12.012$ [1]
6:12 or ratio 1:2 [1]
CH_{2} [1]
(iii) $\mathrm{C}_{6} \mathrm{H}_{12}$ [1]

4 (a (i) (particles) spread to fill total available volume/move from high concentration to low concentration/moves down a concentration gradient (1)
(ii) mass or M_{r} (1)
(b) helium atoms/molecules are lighter than molecules in air or N_{2} and O_{2} or helium is less dense than air or N_{2} and O_{2}.
or helium diffuses (through the porous barrier) faster than air or N_{2} and O_{2}. (1)
(ii) faster rate of diffusion/molecules move faster (at high temperatures). (1)
(c) (i) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (1)
(ii) would get a mixture of helium and carbon dioxide or would get a mixture of gases
or waste of methane/natural gas/fossil fuel (1) [1]
(iii) fractional distillation (1)

5 (a any three from: particles have more energy (1)
move faster (1)
collide more frequently (1)
more particles have energy greater than E_{a}
guidance: more colliding molecules have enough energy to react is worth (2)
(b) particles move in all directions/randomly in both liquids and gases (1)
no bonds/very weak forces between particles in gases (1)
molecules can move apart/separate (to fill entire volume) (1)
OR
bonds/forces/IMF between particles in liquids (1)
molecules cannot move apart/separate (so fixed volume in liquids) (1)

[^0](b) (I) and (s);
reversible sign;
accept: X in equation
ignore: any compounds just look for state symbols
must be the same compound on both sides of equation
(c) boiling / condensation;
accept: evaporation or vaporisation
(d) (in region $B C$) solid melts / liquid boils (in region $D E$);
at one / fixed / sharp / single / specific temperature;

[^0]: 6 (a liquid;

