1	(a	(i)		o nitrogen atoms; note: car each nitrogen atom;	be any combination of dots or crosses	[1] [1]
		(ii)		solid	gas	
			pattern:	regular / lattice	random / irregular / no pattern;	[1]
			distance:	close	far apart / spread out;	[1]
			movement:	vibrate / fixed position	moving;	[1]
			note: comparis	son must be made		
	(b)	col	lide harder / col	e energy / move faster; lide more frequently / more istead of particles	collisions / collide with more force;	[1] [1]
	(c)	(i)	• ,	maller <i>M</i> _r ; ecules) move faster (than ch son must be made	llorine molecules) / ora;	[1 [1]
		(ii)	(at higher tem	perature) molecules move f	aster / have more energy	[1]

Question	Answer	Marl	ks
2(a)(i)	$NH_3 + HCl \rightarrow NH_4Cl;$		1
2(a)(ii)	di		1
2(a)(iii)	solid forms at: A; explanation: ammonia molecules/particles have a smaller mass; (and so) move/diffuse faster;	1 2	3
2(a)(iv)	M1 solid forms in less time/faster/quicker; M2 particles/molecules have more energy; M3 (and so) move faster/diffuse faster;	1 1 1	3
2(b)(i)	test: add sodium hydroxide (solution and warm); result: test gas/ammonia with (red) litmus/Universal Indicator/pH paper; indicator turns blue/ammonia produced;	1 2	3
2(b)(ii)	test: add silver nitrate (solution); result: add (dilute) nitric acid; white precipitate;	1 2	3

vvvvviiii.

Question	Answer	Marks
2(c)(i)	cov	1
2(c)(ii)	 M1 one shared pair of electrons between each N and H; M2 one shared pair of electrons between the N atoms; M3 one lone pair on each N and no additional electrons anywhere; 	3 1 1 1
(d)(i)		1
2(d)(ii)	proteins are made from more than two monomers; OR nylon is made from 1 or 2 monomers (only);	1
2(d)(iii)	acids;	1
2(e)	T = 0	1

[Total: 9]

(a (i) (X(s) ↔) X(l) [1]
 (ii) melting point/freezing point (of X) [1]
 (iii) gas/gaseous or vapour [1]
 (iv) not horizontal or line slopes or line is lower [1]

(b) (i) 14.3 [1] (ii) $85.7 \div 12$ and $14.3 \div 1$ or 7.14 and 14.3[1] ratio 1:2 [1] CH_2 [1] note: Award all 3 marks for correct answer allow: alternative working e.g. $85.7 \times 84 \div 100$ and $14.3 \times 84 \div 100$ or 71.988/72 and 12/12.012[1] 6:12 **or** ratio 1:2 [1] CH_2 [1] (iii) C₆H₁₂ [1]

[1]

- 4 **(a (i)** (particles) spread to fill total available volume/move from high concentration to low concentration/moves down a concentration gradient (1)
 - (ii) mass or M_r (1)
 - (b) helium atoms/molecules are lighter than molecules in air or N_2 and O_2 or helium is less dense than air or N^2 and O_2 .

 or helium diffuses (through the porous barrier) faster than air or N^2 and O_2 . (1) [1]

- (ii) faster rate of diffusion/molecules move faster (at high temperatures). (1) [1]
- (c) (i) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (1) [1]
 - (ii) would get a mixture of helium and carbon dioxideor would get a mixture of gasesor waste of methane/natural gas/fossil fuel (1)[1]
 - (iii) <u>fractional</u> distillation (1) [1]

[Total: 7]

(a any three from:
 particles have more energy (1)
 move faster (1)
 collide more frequently (1)
 more particles have energy greater than E_a
 guidance: more colliding molecules have enough energy to react is worth (2)

(b) particles move in all directions/randomly in both liquids and gases (1)
 no bonds/very weak forces between particles in gases (1)
 molecules can move apart/separate (to fill entire volume) (1)
 OR
 bonds/forces/IMF between particles in liquids (1)
 molecules cannot move apart/separate (so fixed volume in liquids) (1)

[Total: 6]

(a	liquid;	[1]
(b)	(I) and (s); reversible sign; accept: X in equation ignore: any compounds just look for state symbols must be the same compound on both sides of equation	[1] [1]
(c)	boiling / condensation; accept: evaporation or vaporisation	[1]
(d)	(in region BC) solid melts / liquid boils (in region DE); at one / fixed / sharp / single / specific temperature;	[1] [1]
		[Total: 6]